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If adistribution has a strong central tendency, so that most of its area is under
a single peak, then the median is an estimator of the central value. It is a more
robust estimator than the mean is: The median fails as an estimator only if the area
in the tails is large, while the mean fails if the first moment of the tails is large;
it is easy to construct examples where the first moment of the tails is large even
though their area is negligible.

To find the median of a set of values, one can proceed by sorting the set and
then applying (14.1.14). Thisisaprocess of order N log N. You might rightly think
that this is wasteful, since it yields much more information than just the median
(e.g., the upper and lower quartile points, the deciles, etc.). In fact, we saw in
§8.5 that the element = 11)/2 can be located in of order N operations. Consult
that section for routines.

The mode of a probability distribution function p(x) is the value of = where it
takeson amaximumvalue. Themodeisuseful primarily whenthereisasingle, sharp
maximum, in which case it estimates the central value. Occasionally, a distribution
will be bimodal, with two relative maxima; then one may wish to know the two
modes individually. Note that, in such cases, the mean and median are not very
useful, since they will give only a*“compromise” value between the two peaks.
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14.2 Do Two Distributions Have the Same
Means or Variances?

Not uncommonly we want to know whether two distributions have the same
mean. For example, a first set of measured values may have been gathered before
some event, a second set after it. We want to know whether the event, a“treatment”
or a“change in a control parameter,” made a difference.

Our first thought isto ask “how many standard deviations’ one sample mean is
from the other. That number may in fact be a useful thing to know. It doesrelate to
the strength or “importance” of a difference of means if that difference is genuine.
However, by itself, it says nothing about whether the difference is genuine, that is,
statistically significant. A difference of means can be very small compared to the
standard deviation, and yet very significant, if the number of data pointsis large.
Conversely, a difference may be moderately large but not significant, if the data
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610 Chapter 14.  Statistical Description of Data

are sparse. We will be meeting these distinct concepts of strength and significance
severa times in the next few sections.

A quantity that measures the significance of a difference of means is not the
number of standard deviations that they are apart, but the number of so-called
standard errors that they are apart. The standard error of a set of values measures
the accuracy with which the sample mean estimates the population (or “true’) mean.
Typically the standard error is equal to the sample’s standard deviation divided by
the sguare root of the number of points in the sample.

Student’s t-test for Significantly Different Means

Applying the concept of standard error, the conventional statistic for measuring
the significance of a difference of means is termed Sudent’'st. When the two
distributions are thought to have the same variance, but possibly different means,
then Student’s ¢ is computed as follows: First, estimate the standard error of the
difference of the means, s p, from the “pooled variance” by the formula

. 2 ‘ T
oy — 2iica@i —Ta) + 3 ep®i =T (1 1 (14.2.1)
Njg+ Np—2 Ny Np

where each sum is over the points in one sample, the first or second, each mean
likewise refersto one sample or the other, and V 4 and N5 arethe numbers of points
in the first and second samples, respectively. Second, compute ¢ by

p=TATTE (14.2.2)
SD

Third, evaluate the significance of this value of ¢ for Student’s distribution with
N4 + Np — 2 degrees of freedom, by equations (6.4.7) and (6.4.9), and by the
routine betai (incomplete beta function) of §6.4.

The significance is a number between zero and one, and is the probability that
|t| could be this large or larger just by chance, for distributions with equal means.
Therefore, a small numerical value of the significance (0.05 or 0.01) means that the
observed difference is “very significant” The function A(t|v) in equation (6.4.7)
is one minus the significance.

As a routine, we have

SUBROUTINE ttest(datal,nl,data2,n2,t,prob)

INTEGER nil,n2

REAL prob,t,datal(nl),data2(n2)

USES avevar, bet ai
Given the arrays datal(1:n1) and data2(1:n2), this routine returns Student's t as t,
and its significance as prob, small values of prob indicating that the arrays have significantly
different means. The data arrays are assumed to be drawn from populations with the same
true variance.

REAL avel,ave2,df,var,varl,var2,betai

call avevar(datal,nl,avel,varl)

call avevar(data2,n2,ave2,var2)

df=n1+n2-2 Degrees of freedom.
var=((n1-1)*varil+(n2-1) *var2)/d4f Pooled variance.
t=(avel-ave2)/sqrt(var*(1./ni+1./n2))
prob=betai(0.5%df,0.5,df/(df+t**2)) See equation (6.4.9).
return

END
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14.2 Do Two Distributions Have the Same Means or Variances? 611

which makes use of the following routine for computing the mean and variance
of a set of numbers,

SUBROUTINE avevar(data,n,ave,var)
INTEGER n
REAL ave,var,data(n)
Given array data(1:n), returns its mean as ave and its variance as var.
INTEGER j
REAL s,ep
ave=0.0
doun j=1,n
ave=ave+data(j)
enddo 11
ave=ave/n
var=0.0
ep=0.0
do12 j=1,n
s=data(j)-ave
ep=ep+s
var=var+s*s
enddo 12
var=(var-ep**2/n)/(n-1) Corrected two-pass formula (14.1.8).
return
END

The next case to consider is where the two distributions have significantly
different variances, but we nevertheless want to know if their means are the same or
different. (A treatment for baldness has caused some patients to lose al their hair
and turned others into werewolves, but we want to know if it helps cure baldness on
the average!) Be suspicious of the unequal-variance ¢t-test: If two distributions have
very different variances, then they may also be substantially different in shape; in
that case, the difference of the means may not be a particularly useful thing to know.

To find out whether the two data sets have variances that are significantly
different, you use the F-test, described later on in this section.

The relevant statistic for the unequal variance ¢-test is

TA—TB

t= [Var(z4)/Na + Var(zp)/Ng)'/? (14.2.3)

This statigtic is distributed approximately as Student’s ¢ with a number of degrees
of freedom equa to

Var(z4) 4 Var(zp)

Na No (14.2.4
[Var(za)/Na)* + Var(ap)/Np]* 29
Ni—1 Np -1

Expression (14.2.4) is in general not an integer, but equation (6.4.7) doesn’t care.
The routine is

SUBROUTINE tutest(datal,nl,data2,n2,t,prob)
INTEGER nl1,n2
REAL prob,t,datal(nl),data2(n2)

C USES avevar, bet ai

Given the arrays datal(1:n1) and data2(1:n2), this routine returns Student’s ¢ as t,
and its significance as prob, small values of prob indicating that the arrays have significantly
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612 Chapter 14.  Statistical Description of Data

different means. The data arrays are allowed to be drawn from populations with unequal
variances.

REAL avel,ave2,df,varl,var2,betai

call avevar(datal,nil,avel,varl)

call avevar(data2,n2,ave2,var2)

t=(avel-ave2)/sqrt(varl/ni+var2/n2)

df=(varl/ni+var2/n2)**2/((vari/n1) **2/(n1-1)+(var2/n2)**2/(n2-1))

prob=betai(0.5%df,0.5,df/(df+t**2))

return

END

Our final example of a Student’s ¢ test is the case of paired samples. Here
we imagine that much of the variance in both samples is due to effects that are
point-by-point identical in the two samples. For example, we might have two job
candidates who have each been rated by the same ten membersof ahiring committee.
We want to know if the means of the ten scores differ significantly. We first try
ttest above, and obtain a value of prob that is not especially significant (e.g.,
> 0.05). But perhaps the significance is being washed out by the tendency of some
committee members always to give high scores, others always to give low scores,
which increases the apparent variance and thus decreases the significance of any
difference in the means. We thus try the paired-sample formulas,

N
1
Cov(za,op) = 57 ;(M —T2)(zpi — TB) (14.2.5)
_ 1/2
o — {Var(xA)+Var(xB) 2Cov(za,7R) (14.26)
N

,_TATTB (14.2.7)

SD

where N isthe number in each sample (number of pairs). Notice that it isimportant
that a particular value of i label the corresponding points in each sample, that is,
the ones that are paired. The significance of the ¢ statistic in (14.2.7) is evaluated
for N — 1 degrees of freedom.

The routine is

SUBROUTINE tptest(datal,data2,n,t,prob)

INTEGER n

REAL prob,t,datal(n),data2(n)

USES avevar, bet ai
Given the paired arrays datal(1:n) and data2(1:n), this routine returns Student's ¢ for
paired data as t, and its significance as prob, small values of prob indicating a significant
difference of means.

INTEGER j

REAL avel,ave2,cov,df,sd,varl,var2,betai

call avevar(datal,n,avel,varl)

call avevar(data2,n,ave2,var2)

cov=0.

doun j=1,n
cov=cov+(datal(j)-avel)*(data2(j)-ave2)

enddo 11

df=n-1

cov=cov/df

sd=sqrt ((varil+var2-2.*cov)/n)

t=(avel-ave2)/sd
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14.2 Do Two Distributions Have the Same Means or Variances? 613

prob=betai(0.5%df,0.5,df/(df+t**2))
return
END

F-Test for Significantly Different Variances

The F-test tests the hypothesis that two samples have different variances by
trying to regject the null hypothesis that their variances are actually consistent. The
statistic F' is the ratio of one variance to the other, so values either > 1 or <« 1
will indicate very significant differences. The distribution of F' in the null case is
given in equation (6.4.11), which is evaluated using the routine betai. In the most
common case, we are willing to disprove the null hypothesis (of equal variances) by
either very large or very small values of F', so the correct significance is two-tailed,
the sum of two incomplete beta functions. It turns out, by equation (6.4.3), that the
two tails are always equal; we need compute only one, and doubleit. Occasionally,
when the null hypothesisis strongly viable, the identity of the two tails can become
confused, giving an indicated probability greater than one. Changing the probability
to two minus itself correctly exchangesthe tails. These considerations and equation
(6.4.3) give the routine

SUBROUTINE ftest(datal,nl,data2,n2,f,prob)

INTEGER nil,n2

REAL f,prob,datal(nl),data2(n2)

USES avevar, bet ai
Given the arrays datal(1:n1) and data2(1:n2), this routine returns the value of f, and
its significance as prob. Small values of prob indicate that the two arrays have significantly
different variances.

REAL avel,ave2,df1,df2,varl,var2,betai

call avevar(datal,nl,avel,varl)

call avevar(data2,n2,ave2,var2)

if (varl.gt.var2)then Make F' the ratio of the larger variance to the smaller one.
f=varl/var2
df1=n1-1
df2=n2-1

else
f=var2/vari
df1=n2-1
df2=n1-1

endif

prob=2.*betai(0.5%df2,0.5*%df1,df2/(df2+df1f))

if (prob.gt.1.)prob=2.-prob

return

END
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614 Chapter 14.  Statistical Description of Data

14.3 Are Two Distributions Different?

Given two sets of data, we can generalize the questions asked in the previous
section and ask the single question: Arethetwo setsdrawnfromthe samedistribution
function, or from different distribution functions? Equivalently, in proper statistical
language, “Can we disprove, to a certain required level of significance, the null
hypothesis that two data sets are drawn from the same population distribution
function?’ Disproving the null hypothesisin effect provesthat the data sets are from
different distributions. Failing to disprove the null hypothesis, on the other hand,
only shows that the data sets can be consistent with a single distribution function.
One can never prove that two data sets come from a single distribution, since (e.g.)
no practical amount of data can distinguish between two distributions which differ
only by one part in 101°.

Proving that two distributions are different, or showing that they are consistent,
is atask that comes up all the time in many areas of research: Are the visible stars
distributed uniformly in the sky? (That is, is the distribution of stars as a function
of declination — position in the sky — the same as the distribution of sky area as
afunction of declination?) Are educationa patterns the same in Brooklyn asin the
Bronx? (That is, are the distributions of people as a function of last-grade-attended
the same?) Do two brands of fluorescent lights have the same distribution of
burn-out times? Istheincidence of chicken pox the samefor first-born, second-born,
third-born children, etc.?

These four examplesillustrate the four combinations arising from two different
dichotomies: (1) The data are either continuous or binned. (2) Either we wish to
compare one data set to a known distribution, or we wish to compare two equally
unknown data sets. The data sets on fluorescent lights and on stars are continuous,
since we can be given lists of individual burnout times or of stellar positions. The
data sets on chicken pox and educational level are binned, since we are given
tables of numbers of events in discrete categories: first-born, second-born, etc.; or
6th Grade, 7th Grade, etc. Stars and chicken pox, on the other hand, share the
property that the null hypothesis is a known distribution (distribution of areain the
sky, or incidence of chicken pox in the general population). Fluorescent lights and
educational level involve the comparison of two equally unknown data sets (the two
brands, or Brooklyn and the Bronx).

One can aways turn continuous data into binned data, by grouping the events
into specified ranges of the continuous variable(s): declinations between 0 and 10
degrees, 10 and 20, 20 and 30, etc. Binning involvesaloss of information, however.
Also, there is often considerable arbitrariness as to how the bins should be chosen.
Along with many other investigators, we prefer to avoid unnecessary binning of data.

The accepted test for differences between binned distributionsis the chi-square
test. For continuous data as a function of a single variable, the most generally
accepted test is the Kolmogorov-Smirnov test. We consider each in turn.

Chi-Square Test

Suppose that V; is the number of events observed in the ith bin, and that n ; is
the number expected according to some known distribution. Note that the N;'s are
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